login
Decimal expansion of Product_{k>=1} (1 + 1/A002144(k)^3).
11

%I #22 Jun 27 2020 11:55:28

%S 1,0,0,8,7,6,1,2,8,4,2,7,6,0,7,7,6,3,8,5,6,5,9,2,4,1,9,1,9,6,6,9,1,7,

%T 5,7,7,9,2,6,1,9,9,0,6,6,4,3,1,7,7,2,0,6,3,8,9,2,4,3,4,7,1,7,6,1,2,3,

%U 3,6,4,7,5,9,0,2,1,4,5,4,2,4,7,2,8,4,7,7,9,2,3,8,3,9,6,8,2,9,7,7,9,1,7,8,9

%N Decimal expansion of Product_{k>=1} (1 + 1/A002144(k)^3).

%D B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

%H Ph. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta function expansions of some classical constants</a>, Feb 18 1996, p. 7-8.

%F A334424 / A334425 = 105*zeta(3)/(4*Pi^3).

%F A334424 * A334426 = 840*zeta(3)/Pi^6.

%e 1.008761284276077638565924191966917577926199...

%Y Cf. A002144, A243380, A334445, A334449.

%K nonn,cons

%O 1,4

%A _Vaclav Kotesovec_, Apr 30 2020

%E a(17)-a(18) from _Jinyuan Wang_, Apr 30 2020

%E More digits from _Vaclav Kotesovec_, Apr 30 2020 and Jun 27 2020