login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The terms in the Zeckendorf representation of T(n, k) correspond to the terms in common in the Zeckendorf representations of n and of k; square array T(n, k) read by antidiagonals, n, k >= 0.
4

%I #15 Aug 03 2022 17:42:01

%S 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,1,0,0,1,0,0,0,0,3,0,0,0,0,1,0,3,3,0,

%T 1,0,0,0,0,0,4,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,1,0,0,1,5,1,0,0,1,0,0,0,

%U 0,0,0,5,5,0,0,0,0,0,0,0,2,0,0,5,6,5,0

%N The terms in the Zeckendorf representation of T(n, k) correspond to the terms in common in the Zeckendorf representations of n and of k; square array T(n, k) read by antidiagonals, n, k >= 0.

%C This array has connections with the bitwise AND operator (A004198).

%H Rémy Sigrist, <a href="/A334348/b334348.txt">Table of n, a(n) for n = 0..11475</a> (antidiagonals 0..150)

%H Rémy Sigrist, <a href="/A334348/a334348.png">Colored representation of (x, y) for 0 <= x, y <= 1000</a> (where the hue is function of T(x, y))

%H Rémy Sigrist, <a href="/A334348/a334348.gp.txt">PARI program for A334348</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Zeckendorf&#39;s_theorem">Zeckendorf's theorem</a>

%H <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>

%F T(n, k) = A022290(A003714(n) AND A003714(k)) (where AND denotes the bitwise AND operator, A004198).

%F T(n, 0) = 0.

%F T(n, n) = n.

%F T(n, k) = T(k, n).

%F T(m, T(n, k)) = T(T(m, n), k).

%e Square array begins:

%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13

%e ---+----------------------------------------------

%e 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%e 1| 0 1 0 0 1 0 1 0 0 1 0 0 1 0

%e 2| 0 0 2 0 0 0 0 2 0 0 2 0 0 0

%e 3| 0 0 0 3 3 0 0 0 0 0 0 3 3 0

%e 4| 0 1 0 3 4 0 1 0 0 1 0 3 4 0

%e 5| 0 0 0 0 0 5 5 5 0 0 0 0 0 0

%e 6| 0 1 0 0 1 5 6 5 0 1 0 0 1 0

%e 7| 0 0 2 0 0 5 5 7 0 0 2 0 0 0

%e 8| 0 0 0 0 0 0 0 0 8 8 8 8 8 0

%e 9| 0 1 0 0 1 0 1 0 8 9 8 8 9 0

%e 10| 0 0 2 0 0 0 0 2 8 8 10 8 8 0

%e 11| 0 0 0 3 3 0 0 0 8 8 8 11 11 0

%e 12| 0 1 0 3 4 0 1 0 8 9 8 11 12 0

%e 13| 0 0 0 0 0 0 0 0 0 0 0 0 0 13

%o (PARI) See Links section.

%Y Cf. A003714, A022290, A004198, A332022, A332565.

%K nonn,tabl,look,base

%O 0,13

%A _Rémy Sigrist_, Apr 24 2020