

A334345


Numbers k such that k and k+1 are both binary Moran numbers (A334344).


3



115, 355, 1266, 1555, 1686, 1795, 4195, 4206, 4962, 5155, 5298, 6978, 9235, 10002, 11230, 13315, 18822, 21752, 22602, 23106, 26072, 29816, 40616, 42258, 60056, 60730, 64690, 68802, 83586, 87272, 91736, 94616, 100990, 107526, 108910, 109448, 113192, 121112, 125436
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

115 is a term since 115/A000120(115) = 23 and 116/A000120(116) = 29 are both prime numbers.


MAPLE

q:= n> (p> is(p, integer) and isprime(p))(n/add(i, i=Bits[Split](n))):
select(k> q(k) and q(k+1), [$1..126000])[]; # Alois P. Heinz, Apr 23 2020


MATHEMATICA

binMoranQ[n_] := PrimeQ[n / DigitCount[n, 2, 1]]; Select[Range[10^5], binMoranQ[#] && binMoranQ[# + 1] &]


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



