login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of graceful labelings for the complete tripartite graph K_{1,1,n}.
3

%I #74 Oct 30 2024 11:34:45

%S 12,32,168,1152,9600,97920,1491840,21127680,377395200,7605964800,

%T 164457216000,3935477145600,102571486617600,2858053098700800,

%U 85725900868608000,2745404797943808000,93266934645620736000,3356738924418367488000,127589166595209166848000

%N Number of graceful labelings for the complete tripartite graph K_{1,1,n}.

%C Except for n = 2, a(n) = A333728(n+2) up to at least n = 6.

%H Paolo Xausa, <a href="/A334307/b334307.txt">Table of n, a(n) for n = 1..400</a> (terms 1..48 from Don Knuth)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteTripartiteGraph.html">Complete Tripartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GracefulLabeling.html">Graceful Labeling</a>

%F If n>1, a(n) = 4*A339891(n)*n!. - _Don Knuth_, Dec 21 2020.

%t A334307[n_]:=If[n==1,12,4n!(DivisorSum[2n+1,2^((#-1)/2)&]+DivisorSigma[0,n+1]-2^(n-1)-1)];Array[A334307, 25] (* _Paolo Xausa_, Dec 04 2023 *)

%Y Cf. A333728 (maximum number of graceful labelings for an n-node simple graph), A339891.

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Apr 24 2020

%E a(8) and a(9) from _Pontus von Brömssen_, Jul 25 2020

%E Terms a(10) and beyond from _Don Knuth_, Dec 21 2020