login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest k such that (2k+1)*2^n+1 is prime.
1

%I #31 Jul 14 2020 21:39:16

%S 0,0,0,2,0,1,1,2,0,7,6,4,1,2,3,2,0,4,1,5,3,5,12,22,22,2,3,7,6,11,1,17,

%T 21,4,37,29,1,7,7,2,13,1,4,4,7,17,9,13,7,11,3,8,3,25,24,2,13,14,49,13,

%U 15,26,52,4,12,4,1,4,15,11,19,19,63,11,33,2,46

%N Smallest k such that (2k+1)*2^n+1 is prime.

%C A057775 is the corresponding sequence of primes.

%H Robert Israel, <a href="/A334296/b334296.txt">Table of n, a(n) for n = 0..2000</a>

%F a(n) = (A057778(n)-1)/2.

%F a(n) = ((A057775(n)-1)/2^n-1)/2.

%e a(0)=a(1)=a(2)=0 because 2^0+1=2, 2^1+1=3, 2^2+1=5 are prime.

%e a(3)=2 because 2^8+1=9 and 3*2^8+1=25 are not prime, but 5*2^8+1=41 is.

%p f:= proc(n) local t, v, k;

%p t:= 2^n; v:= -t+1;

%p for k from 0 do

%p v:= v+2*t;

%p if isprime(v) then return k fi

%p od

%p end proc:

%p map(f, [$0..100]); # _Robert Israel_, Jul 14 2020

%t a[n_] := Block[{k = 0}, While[! PrimeQ[(2 k + 1) 2^n + 1], k++]; k]; Array[a, 77, 0] (* _Giovanni Resta_, May 08 2020 *)

%o (Python)

%o from itertools import count

%o from sympy import isprime

%o def pow2p1() : # generates the sequence

%o for n in count() :

%o for k in count() :

%o if isprime(((2*k+1)<<n)+1) :

%o yield k

%o break

%o (PARI) a(n) = my(k=0); while (!isprime((2*k+1)*2^n+1), k++); k; \\ _Michel Marcus_, Apr 30 2020

%Y Cf. A057778, A057775, A035050, A035089.

%K nonn

%O 0,4

%A _Mike Speciner_, Apr 21 2020