login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers k such that the sum of k twin primes pairs starting from (5,7) is a perfect power.
0

%I #38 Apr 27 2020 09:47:16

%S 2,5,9,352,165421,356928514,795471483

%N Integers k such that the sum of k twin primes pairs starting from (5,7) is a perfect power.

%e a(1) = 2 as 5+7 + 11+13 = 36 = 6^2;

%e a(2) = 5 as 5+7 + 11+13 + 17+19 + 29+31 + 41+43 = 216 = 6^3.

%e From _Michel Marcus_, Apr 27 2020: (Start)

%e Table of results, with k, greatest prime and corresponding sum:

%e 2, 13, 36 = 6^2;

%e 5, 43, 216 = 6^3;

%e 9, 109, 900 = 30^2;

%e 352, 20749, 6290064 = 2508^2;

%e 165421, 32841799, 5048685437184 = 2246928^2. (End)

%e From _Giovanni Resta_, Apr 27 2020: (Start)

%e The next two entries of the table above are:

%e 356928514, 165800305423, 56622416174760209796 = 7524786786^2;

%e 795471483, 396030375733, 301922786495024336196 = 17375925486^2. (End)

%o (PARI) lista(nn) = {my(s = 0, nb = 0); forprime(p=5, nn, if (isprime(p+2), s += 2*p+2; nb++; if (ispower(s), print1(nb, ", "));););} \\ _Michel Marcus_, Apr 22 2020

%Y Cf. A001097 (twin primes), A054735 (sum of twin prime pairs).

%K nonn,more

%O 1,1

%A _Devansh Singh_, Apr 21 2020

%E a(4)-a(5) from _Michel Marcus_, Apr 22 2020

%E a(6) from _Jinyuan Wang_, Apr 24 2020

%E a(7) from _Giovanni Resta_, Apr 27 2020