Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 09 2020 07:17:31
%S 1,2,18,273,5812,159255,5336322,211385076,9663571400,500742188415,
%T 29002424377110,1856728690107027,130194428384173116,
%U 9923500366931329282,816909605562423271178,72231668379957026776065,6827368666949651984215824,686970682778467688690704639
%N a(n) = exp(-n) * Sum_{k>=0} (k + n)^n * n^k / k!.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>
%F a(n) = n! * [x^n] exp(n*(exp(x) + x - 1)).
%F a(n) = Sum_{k=0..n} binomial(n,k) * BellPolynomial_k(n) * n^(n-k).
%F a(n) ~ c * exp((r^2/(1-r) - 1)*n) * n^n / (1-r)^n, where r = A333761 = 0.59894186245845296434937... is the root of the equation LambertW(r) = 1-r and c = 0.897950293373062982395233981707095204244165706668136925178217032608352851... - _Vaclav Kotesovec_, Jun 09 2020
%t Table[n! SeriesCoefficient[Exp[n (Exp[x] + x - 1)], {x, 0, n}], {n, 0, 17}]
%t Join[{1}, Table[Sum[Binomial[n, k] BellB[k, n] n^(n - k), {k, 0, n}], {n, 1, 17}]]
%Y Cf. A134980, A242817, A334240, A334241, A334243.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Apr 19 2020