login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334154
a(n) is the number of length n decorated permutations avoiding the pattern 012.
1
1, 2, 5, 15, 54, 236, 1254, 7986, 59584, 509304, 4897272, 52237448, 611460432, 7787383488, 107155194928, 1583776282704, 25019083516416, 420609003810944, 7496930998018176, 141203784944996736, 2802115237399913728, 58432523737192745472, 1277372108617847278848
OFFSET
0,2
COMMENTS
A decorated permutation of length n is a word w=w_1...w_n on the letters {0,...,n} such that the restriction of w to its nonzero entries is an ordinary permutation in one-line notation. Then w avoids the pattern 012 if there is no subword w_{i_1}w_{i_2}w_{i_3} with i_1 < i_2 < i_3 such that w_{i_1} = 0 and 0 < w_{i_2} < w_{i_3}.
FORMULA
a(n) = n! + Sum_{j=1..n} Sum_{l=1..n-j+1} binomial(n-l,j-1)*binomial(n-j,l-1)*(l-1)!.
EXAMPLE
For n=3, there are 16 decorated permutations of length 3 (000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321). All of these avoid 012 except 012 itself. Therefore, a(3) = 15.
For n=5, 02031 is a decorated permutation that does not avoid 012 because it contains the subword 023.
PROG
(PARI) a(n) = n! + sum(j=1, n, sum(l=1, n-j+1, binomial(n-l, j-1)*binomial(n-j, l-1)*(l-1)!)); \\ Michel Marcus, May 11 2020
CROSSREFS
Sequence in context: A171450 A204190 A051295 * A009383 A376349 A104429
KEYWORD
nonn
AUTHOR
Jordan Weaver, Apr 16 2020
STATUS
approved