Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 05 2020 16:54:38
%S 1,40,271,183,1184,102,2861,9102,4446,16837,3483,25332,62253,30739,
%T 88410,26394,111803,2177,123512,298353,110585,346624,55398,366215,
%U 782616,335806,866645,228189,893798,9628,832307,1873716,643300,1905211,280161,1793338,3647187
%N a(n) is the multiplicative inverse of A008514(n) modulo A008514(n+1).
%o (PARI)
%o f(n) = n^4 + (n+1)^4; \\ A008514
%o a(n) = lift(1/Mod(f(n), f(n+1)));
%o (Python)
%o import gmpy2
%o soc = [] # sum of 4d-centered cubes
%o a=0
%o b=1
%o for i in range(100):
%o c = a**4 + b**4
%o soc.append(c)
%o a += 1
%o b += 1
%o A334121 = []
%o for i in range(len(soc)-1):
%o c = gmpy2.invert(soc[i], soc[i+1])
%o A334121.append(int(c))
%o print(', '.join([str(x) for x in A334121]))
%Y Cf. A008514, A308215, A308217, A334137.
%K nonn
%O 0,2
%A _Daniel Hoyt_, Apr 14 2020