login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334105
Numbers m for which A329697(m) = 5.
8
127, 129, 133, 139, 141, 147, 161, 163, 171, 173, 177, 189, 191, 197, 199, 201, 203, 207, 209, 211, 213, 215, 217, 223, 229, 231, 235, 237, 243, 245, 247, 253, 254, 258, 259, 261, 263, 266, 269, 271, 273, 277, 278, 279, 282, 285, 294, 295, 297, 299, 311, 315, 317, 319, 321, 322, 326, 327, 331, 333, 335, 341, 342, 345, 346, 349, 351
OFFSET
1,1
EXAMPLE
127 = 63*2 + 1 is a term, as 127 is a prime and 63 is in A334104 as A329697(63) = 4.
2^32 -1 = 4294967295 = 3*5*17*257*65537 is a term as it is a product of five Fermat primes, thus in five steps all odd primes can be eliminated with p -> (p-1) map.
Likewise for 1442840405 = 5 * 17 * 257^3. (The first term with binary weight = 24).
MATHEMATICA
Position[Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 360], 5][[All, 1]] (* Michael De Vlieger, Apr 30 2020 *)
PROG
(PARI)
A329697(n) = if(!bitand(n, n-1), 0, 1+A329697(n-(n/vecmax(factor(n)[, 1]))));
isA334105(n) = (5==A329697(n));
CROSSREFS
Row 5 of A334100.
Cf. A334095 (primes present).
Sequence in context: A082456 A326717 A080540 * A077358 A069686 A077360
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 14 2020
STATUS
approved