login
Even numbers with a Goldbach partition (p,q), p < q (p, q prime) such that q - p is a nonzero square.
0

%I #7 Apr 21 2020 19:52:37

%S 10,18,22,30,42,46,50,58,70,78,82,90,98,102,106,110,114,122,126,130,

%T 138,142,150,154,158,162,170,174,178,182,190,198,202,210,218,222,234,

%U 238,242,246,250,258,262,270,278,282,290,294,298,302,310,318

%N Even numbers with a Goldbach partition (p,q), p < q (p, q prime) such that q - p is a nonzero square.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>

%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%t Flatten[Table[If[Sum[(Floor[Sqrt[2 n - 2 i]] - Floor[Sqrt[2 n - 2 i - 1]]) (PrimePi[i] - PrimePi[i - 1]) (PrimePi[2 n - i] - PrimePi[2 n - i - 1]), {i, n - 1}] > 0, 2 n, {}], {n, 150}]]

%Y Cf. A002375.

%K nonn

%O 1,1

%A _Wesley Ivan Hurt_, Apr 11 2020