%I #24 Nov 04 2020 05:58:13
%S 1,1,2,4,6,20,60,120,144,7920,18480,18480,7920,27720,2520,637560,
%T 8288280,480720240,240360120,480720240,480720240,480720240,240360120,
%U 9854764920,19709529840,9854764920,16424608200,670124014560,88791431929200,88791431929200
%N a(n) is the multiplicative order of the n-th prime number q modulo (q-1)#.
%H Mathoverflow, <a href="https://mathoverflow.net/questions/364413/what-is-the-multiplicative-order-of-this-number">What is the multiplicative order of this number</a>
%e For n = 2, q = prime(2) = 3, we have (q-1)#=2, then the multiplicative order of q modulo (q-1)# is 1.
%p with(NumberTheory):
%p primorial := proc(n::integer)
%p local total := 1:
%p local count := 2;
%p for count from 2 to n do
%p if isprime(count) then
%p total *= count
%p endif;
%p end:
%p return total;
%p end proc:
%p numberOfTerms := 3;
%p List := [seq(MultiplicativeOrder(ithprime(i), primorial(ithprime[i]-1)),i=1..numberOfTerms)]
%t a[n_] := MultiplicativeOrder[Prime[n], Times @@ Prime[Range[n-1]]];
%t a /@ Range[30] (* _Jean-François Alcover_, Nov 03 2020 *)
%o (PARI) a(n)={znorder(Mod(prime(n),vecprod(primes(n-1))))} \\ _Andrew Howroyd_, Sep 05 2020
%Y Cf. A002110.
%K nonn
%O 1,3
%A _Yassine Lagrida_, Sep 04 2020
%E Terms a(16) and beyond from _Andrew Howroyd_, Sep 05 2020