login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333952
Recursively highly composite numbers: numbers m such that A067824(m) > A067824(k) for all k < m.
3
1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
OFFSET
1,2
COMMENTS
This sequence is not to be confused with A333931.
The corresponding record values are 1, 2, 4, 6, 8, 16, 40, 52, 96, ...
Fink (2019) defined this sequence. He asked whether 720 is the largest term that is also highly composite number (A002182).
This is, except the terms 2, the sequence records of indices of A074206 for positive n as a(n) = 2*A074206(n), n>1, i.e. A307866. (formula from - Vladeta Jovovic, Jul 03 2005) - David A. Corneth, Apr 13 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..291 (first 120 terms from Amiram Eldar)
Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. See section 5.
T. M. A. Fink, Number of ordered factorizations and recursive divisors, arXiv:2307.16691 [math.NT], 2023.
EXAMPLE
The first 6 terms of A067824 are 1, 2, 2, 4, 2, 6. The record values occur at 1, 2, 4, 6, the first 4 terms of this sequence.
MATHEMATICA
d[1] = 1; d[n_] := d[n] = 1 + DivisorSum[n, d[#] &, # < n &]; seq={}; dm = 0; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[seq, n]], {n, 1, 10^4}]; seq
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 11 2020
STATUS
approved