login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(Sum_{k>=0} x^(6*k + 1) / (6*k + 1)!).
2

%I #11 Sep 22 2023 12:42:59

%S 1,1,1,1,1,1,1,2,9,37,121,331,793,1718,5163,32281,217921,1188709,

%T 5291353,20031170,66744741,267996541,2030569465,18368560519,

%U 138812739409,853152218102,4409607501927,19826125988257,99717123889777,871344991322017,9658479225877057

%N Expansion of e.g.f. exp(Sum_{k>=0} x^(6*k + 1) / (6*k + 1)!).

%C Number of partitions of n-set into blocks congruent to 1 mod 6.

%F a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/6)} binomial(n-1,6*k) * a(n-6*k-1). - _Seiichi Manyama_, Sep 22 2023

%t nmax = 30; CoefficientList[Series[Exp[Sum[x^(6 k + 1)/(6 k + 1)!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = Sum[Boole[MemberQ[{1}, Mod[k, 6]]] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 30}]

%t nmax = 30; CoefficientList[Series[Exp[x*HypergeometricPFQ[{}, {1/3, 1/2, 2/3, 5/6, 7/6}, x^6/46656]], {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Apr 15 2020 *)

%Y Cf. A000110, A003724, A306347, A333881, A333882.

%K nonn

%O 0,8

%A _Ilya Gutkovskiy_, Apr 08 2020