%I #27 Jun 29 2023 11:01:14
%S 1,16,117204,440051896440,825830699757513748579,
%T 769203260676279544212492116449800,
%U 354179806054404909542325896762875458037457353029,80433401895946253522491939742836167238530417144721958187080077425
%N Number of Hamiltonian paths in a 2*(2*n+1) X (2*n+1) grid starting at the upper left corner and finishing in the lower right corner.
%H Ed Wynn, <a href="/A333863/b333863.txt">Table of n, a(n) for n = 0..9</a>
%F a(n) = A333580(2*(2*n+1), 2*n+1).
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o import graphillion.tutorial as tl
%o def A333863(n):
%o universe = tl.grid(4 * n + 1, 2 * n)
%o GraphSet.set_universe(universe)
%o start, goal = 1, 2 * (2 * n + 1) ** 2
%o paths = GraphSet.paths(start, goal, is_hamilton=True)
%o return paths.len()
%o print([A333863(n) for n in range(7)])
%Y Cf. A001184, A333580, A333585, A333864.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Apr 08 2020
%E More terms from _Ed Wynn_, Jun 28 2023