login
a(n) is the greatest integer q <= n such that for some r >= q, phi(q) + phi(r) = 2*n.
1

%I #17 Sep 16 2024 06:43:31

%S 1,0,3,4,5,6,7,8,9,10,11,12,12,14,15,16,17,18,19,20,21,21,23,24,25,26,

%T 27,28,29,30,31,32,33,34,35,36,34,38,39,40,41,42,43,43,45,46,47,48,49,

%U 50,51,52,53,53,55,56,57,58,59,60,60,61,62,64,65,66,64,68,68,70

%N a(n) is the greatest integer q <= n such that for some r >= q, phi(q) + phi(r) = 2*n.

%C Paul Erdős and Leo Moser conjectured that, for any even numbers 2*n, there exist integers q and r such that phi(q) + phi(r) = 2*n.

%D George E. Andrews, Number Theory, Chapter 6, Arithmetic Functions, 6-1 Combinatorial Study of Phi(n) page 75-82, Dover Publishing, NY, 1971.

%D Daniel Zwillinger, Editor-in-Chief, CRC Standard Mathematical Tables and Formulae, 31st Edition, 2.4.15 Euler Totient pages 128-130, Chapman & Hall/CRC, Boca Raton, 2003.

%H Robert Israel, <a href="/A333838/b333838.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric W. Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldbachConjecture.html">Goldbach's Conjecture.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>

%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>

%p f:= proc(n) local q, R;

%p for q from n by -1 to 0 do

%p R:= numtheory:-invphi(2*n-numtheory:-phi(q));

%p if ormap(`>=`,R,q) then return q fi;

%p od;

%p -1

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Sep 15 2024

%t mbr = Union@Array[EulerPhi@# &, 500]; a[n_] := Block[{q = n}, While[! MemberQ[mbr, 2 n - EulerPhi@q], q--]; q]; Array[a, 70]

%Y Cf. A306513, A306513, A333819, A333820.

%K nonn

%O 1,3

%A _Robert G. Wilson v_, Apr 07 2020

%E Definition corrected by _Robert Israel_, Sep 15 2024