login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333829 Triangle read by rows: T(n,k) is the number of parking functions of length n with k strict descents. T(n,k) for n >= 1 and 0 <= k <= n-1. 1
1, 2, 1, 5, 10, 1, 14, 73, 37, 1, 42, 476, 651, 126, 1, 132, 2952, 8530, 4770, 422, 1, 429, 17886, 95943, 114612, 31851, 1422, 1, 1430, 107305, 987261, 2162033, 1317133, 202953, 4853, 1, 4862, 642070, 9613054, 35196634, 39471355, 13792438, 1262800, 16786, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In a parking function w(1), ..., w(n), a strict descent is an index i such that w(i) > w(i+1).
Define an n-dimensional polytope as the convex hull of length n+1 nondecreasing parking functions. Then, the Ehrhart h*-polynomial of this polytope is Sum_{k=0..n-1} T(n,k) * z^(n-1-k).
LINKS
Paul R. F. Schumacher, Descents in Parking Functions, J. Int. Seq. 21 (2018), #18.2.3.
EXAMPLE
The triangle T(n,k) begins:
n/k 0 1 2 3 4 5
1 1
2 2 1
3 5 10 1
4 14 73 37 1
5 42 476 651 126 1
6 132 2952 8530 4770 422 1
...
The 10 parking functions of length 3 with 1 strict descent are: [[1, 2, 1], [2, 1, 1], [1, 3, 1], [3, 1, 1], [2, 1, 2], [2, 2, 1], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]].
PROG
(SageMath)
var('z, t')
assume(0<z<1)
# Returns a polynomial which is the generating function of strict descents in permutations of a multiset of integers. The multiplicity of these integers are given by an integer partition l. The function uses an analytic expression rather than enumerating the combinatorial objects.
def des_multiset(l):
return expand(factor(sum( mul( mul( t+i for i in range(1, k+1)) / factorial(k) for k in l ) * z**t , t , 0 , oo ) * (1-z)**(sum(l)+1) ))
# Returns the numbers of noncrossing partitions of size n and type l (an integer partition of n), cf. Kreweras: "Sur les partitions non-croisées d'un cycle".
def kreweras_numbers(l):
m = l.to_exp()
s = sum(l)
return ZZ.prod(range(s - len(l) + 2, s + 1)) // ZZ.prod(factorial(i) for i in m)
def Trow(n):
pol = sum(des_multiset(l) * kreweras_numbers(l) for l in Partitions(n))
return pol.list()
print([Trow(n) for n in (1..4)])
(SageMath) # using[latte_int from LattE]
# Install with "sage -i latte_int".
# Another method is to compute the Ehrhart h^*-polynomial of a polytope.
var('z, t')
def Tpol(n):
p = Polyhedron( NonDecreasingParkingFunctions(n+1) ).ehrhart_polynomial()
return expand(factor( (1-z)**(n+1) * sum( p * z**t , t , 0 , oo ) ))
def T(n, k):
return Tpol(n).list()[n-1-k]
CROSSREFS
Row sums give A000272(n+1).
Column k=0 gives A000108.
Similar to A108267.
Sequence in context: A326179 A247368 A019098 * A035309 A174218 A226308
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 10:52 EST 2023. Contains 367560 sequences. (Running on oeis4.)