login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A333829
Triangle read by rows: T(n,k) is the number of parking functions of length n with k strict descents. T(n,k) for n >= 1 and 0 <= k <= n-1.
1
1, 2, 1, 5, 10, 1, 14, 73, 37, 1, 42, 476, 651, 126, 1, 132, 2952, 8530, 4770, 422, 1, 429, 17886, 95943, 114612, 31851, 1422, 1, 1430, 107305, 987261, 2162033, 1317133, 202953, 4853, 1, 4862, 642070, 9613054, 35196634, 39471355, 13792438, 1262800, 16786, 1
OFFSET
1,2
COMMENTS
In a parking function w(1), ..., w(n), a strict descent is an index i such that w(i) > w(i+1).
Define an n-dimensional polytope as the convex hull of length n+1 nondecreasing parking functions. Then, the Ehrhart h*-polynomial of this polytope is Sum_{k=0..n-1} T(n,k) * z^(n-1-k).
LINKS
Ari Cruz, Pamela E. Harris, Kimberly J. Harry, Jan Kretschmann, Matt McClinton, Alex Moon, John O. Museus, and Eric Redmon, On some discrete statistics of parking functions, arXiv:2312.16786 [math.CO], 2023.
Paul R. F. Schumacher, Descents in Parking Functions, J. Int. Seq. 21 (2018), #18.2.3.
EXAMPLE
The triangle T(n,k) begins:
n/k 0 1 2 3 4 5
1 1
2 2 1
3 5 10 1
4 14 73 37 1
5 42 476 651 126 1
6 132 2952 8530 4770 422 1
...
The 10 parking functions of length 3 with 1 strict descent are: [[1, 2, 1], [2, 1, 1], [1, 3, 1], [3, 1, 1], [2, 1, 2], [2, 2, 1], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2]].
PROG
(SageMath)
var('z, t')
assume(0<z<1)
# Returns a polynomial which is the generating function of strict descents in permutations of a multiset of integers. The multiplicity of these integers are given by an integer partition l. The function uses an analytic expression rather than enumerating the combinatorial objects.
def des_multiset(l):
return expand(factor(sum( mul( mul( t+i for i in range(1, k+1)) / factorial(k) for k in l ) * z**t , t , 0 , oo ) * (1-z)**(sum(l)+1) ))
# Returns the numbers of noncrossing partitions of size n and type l (an integer partition of n), cf. Kreweras: "Sur les partitions non-croisées d'un cycle".
def kreweras_numbers(l):
m = l.to_exp()
s = sum(l)
return ZZ.prod(range(s - len(l) + 2, s + 1)) // ZZ.prod(factorial(i) for i in m)
def Trow(n):
pol = sum(des_multiset(l) * kreweras_numbers(l) for l in Partitions(n))
return pol.list()
print([Trow(n) for n in (1..4)])
(SageMath) # using[latte_int from LattE]
# Install with "sage -i latte_int".
# Another method is to compute the Ehrhart h^*-polynomial of a polytope.
var('z, t')
def Tpol(n):
p = Polyhedron( NonDecreasingParkingFunctions(n+1) ).ehrhart_polynomial()
return expand(factor( (1-z)**(n+1) * sum( p * z**t , t , 0 , oo ) ))
def T(n, k):
return Tpol(n).list()[n-1-k]
CROSSREFS
Row sums give A000272(n+1).
Column k=0 gives A000108.
Similar to A108267.
Sequence in context: A326179 A247368 A019098 * A035309 A174218 A226308
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved