|
|
A333746
|
|
Numbers k such that k, k+1 and k+2 have the same period of binary representation (A007733).
|
|
1
|
|
|
23284, 77906, 509737, 717817, 996601, 1132177, 1550377, 3264241, 3896546, 4326962, 4491362, 4542457, 5978857, 7097161, 8981977, 9628921, 10140386, 11098201, 11472337, 12078217, 12699122, 13335457, 14079577, 16795417, 17796146, 17807017, 18832082, 20221106, 21096146
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that A007733(k) = A007733(k+1) = A007733(k+2).
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
EXAMPLE
|
23284 is a term since A007733(23284) = A007733(23285) = A007733(23286) = 388.
|
|
MATHEMATICA
|
f[n_] := MultiplicativeOrder[2, n/(2^IntegerExponent[n, 2])]; f1 = f[1]; f2 = f[2]; seq = {}; Do[f3 = f[n]; If[f1 == f2 && f2 == f3, AppendTo[seq, n-2]]; f1 = f2; f2 = f3, {n, 3, 10^6}]; seq
|
|
CROSSREFS
|
Cf. A007733, A333745.
Sequence in context: A205275 A133968 A337784 * A251111 A205834 A184229
Adjacent sequences: A333743 A333744 A333745 * A333747 A333748 A333749
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amiram Eldar, Apr 03 2020
|
|
STATUS
|
approved
|
|
|
|