login
Number of self-avoiding paths in (2*n+1) X 3 grid starting the upper left corner, passing through the center of grid and finishing the lower right corner.
2

%I #31 Apr 02 2020 14:06:07

%S 1,10,101,1105,12046,131399,1433341,15635350,170555501,1860475165,

%T 20294671306,221380909199,2414895329881,26342467719490,

%U 287352249584501,3134532277710025,34192502805225766,372982998579773399,4068620481572281621,44381842298715324430,484131644804296287101

%N Number of self-avoiding paths in (2*n+1) X 3 grid starting the upper left corner, passing through the center of grid and finishing the lower right corner.

%H Seiichi Manyama, <a href="/A333686/b333686.txt">Table of n, a(n) for n = 0..500</a>

%F Conjecture: G.f.: (1-3*x-x^2)*(1+3*x+x^2+x^3)/((1-x)*(1+x)*(1+x+x^2)*(1-11*x+x^2)).

%F Conjecture: a(n) = 10*a(n-1) + 10*a(n-2) - 10*a(n-4) - 10*a(n-5) + a(n-6) for n>5.

%e a(0) = 1;

%e S--+--E

%e a(1) = 10;

%e S--*--* S--*--* S--* S--* S--*

%e | | | | |

%e +--* *--+--* +--* + *--+

%e | | | | |

%e *--E *--*--E E *--E *--*--E

%e S *--* S *--* S S S

%e | | | | | | | | |

%e * + * *--+ * * +--* *--+--* *--+

%e | | | | | | | | |

%e *--* E E *--* E E *--E

%e a(2) = 101;

%e S--*--* S--*--* S--*--* S--*--* S--*--*

%e | | | | |

%e *--*--* *--*--* *--*--* *--*--* *--*--*

%e | | | | |

%e *--+--* *--+ *--+ *--+ * +--*

%e | | | | | | |

%e * *--* *--* * *--* *

%e | | | | |

%e E *--*--E E *--E E

%e ... and so on.

%o (Python)

%o # Using graphillion

%o from graphillion import GraphSet

%o import graphillion.tutorial as tl

%o def A333685(n, k):

%o if n == 0 or k == 0: return 1

%o universe = tl.grid(2 * n, 2 * k)

%o GraphSet.set_universe(universe)

%o start, goal = 1, (2 * n + 1) * (2 * k + 1)

%o paths = GraphSet.paths(start, goal).including((start + goal) // 2)

%o return paths.len()

%o def A333686(n):

%o return A333685(n, 1)

%o print([A333686(n) for n in range(20)])

%Y Column 1 of A333685.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Apr 02 2020