Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 29 2020 01:24:22
%S 1,128,28002,7503654,2087813834,585874869236,164719994049404,
%T 46331085939142414,13032851914297031372,3666193548666012258524,
%U 1031319586988812684556890,290115923359022569718438776,81611236566429170178900484740,22957699681804739055041075650848
%N Number of directed Hamiltonian walks from NW to SW corners of a 9 X (2*n+1) grid.
%H Seiichi Manyama, <a href="/A333605/b333605.txt">Table of n, a(n) for n = 0..200</a>
%o (Python)
%o # Using graphillion
%o from graphillion import GraphSet
%o import graphillion.tutorial as tl
%o def A271592(n, k):
%o if k == 1: return 1
%o universe = tl.grid(k - 1, n - 1)
%o GraphSet.set_universe(universe)
%o start, goal = 1, n
%o paths = GraphSet.paths(start, goal, is_hamilton=True)
%o return paths.len()
%o def A333605(n):
%o return A271592(9, 2 * n + 1)
%o print([A333605(n) for n in range(15)])
%Y Row n=9 of A271592 (with 0 omitted).
%Y Cf. A333584.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Mar 28 2020