login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(2) = 0, and otherwise a(n) is the least multiple of prime(n+1) whose decimal representation ends with that of prime(n).
2

%I #35 Apr 29 2021 01:41:32

%S 12,0,35,77,611,1513,817,1219,2523,1829,2331,2337,3741,3243,5247,3953,

%T 1159,5561,5467,1971,6873,1079,4183,3589,9797,48101,3103,46107,33109,

%U 15113,120127,77131,67137,76139,45149,38151,104157,165163,100167,87173,101179,170181

%N a(2) = 0, and otherwise a(n) is the least multiple of prime(n+1) whose decimal representation ends with that of prime(n).

%C Inspired by the 134th problem of Project Euler (see link).

%C a(n) > 1 iff n != 2.

%C Some particular terms:

%C a(3) = 35 is the concatenation of prime(2) and prime(3),

%C a(4) = 77 is the palindrome prime(4) and prime(4),

%C a(13) = 3741 is the concatenation of prime(12) and prime(13),

%C a(25) = 9797 is the concatenation of prime(25) and prime(25).

%H Chai Wah Wu, <a href="/A333577/b333577.txt">Table of n, a(n) for n = 1..10000</a>

%H Project Euler, <a href="https://projecteuler.net/problem=134">Problem 134: Prime pair connection</a>.

%e For prime(2) = 3 and prime(3) = 5, there does not exist any integer that ends with 3 and is divisible by 5, hence a(2)=0 and it is the only term equal to 0.

%e For prime(5) = 11 and prime(6) = 13, 611 ends with 11 and 611=13*47 is divisible by 13, and no integer < 611 satisfies these two conditions, so a(5)= 611.

%t a[2] = 0; a[n_] := Module[{p = Prime[n], q, r}, q = NextPrime[p]; r = 10^Ceiling[Log10[p]]; While[!Divisible[p, q], p += r]; p]; Array[a, 100] (* _Amiram Eldar_, Mar 27 2020 *)

%o (PARI) a(n) = {if (n==2, return(0)); my(p = prime(n), q = prime(n+1), x = p, k = 0); until ((x % q) == 0, k++; x = eval(concat(Str(k), Str(p)));); x;} \\ _Michel Marcus_, Mar 28 2020

%o (PARI) a(n) = { if (n==2, return (0), my (p=prime(n), q=nextprime(p+1)); lift(chinese(Mod(p, 10^#digits(p)), Mod(0, q)))) } \\ _Rémy Sigrist_, Mar 29 2020

%o (Python)

%o from sympy import prime, nextprime, mod_inverse

%o def A333577(n):

%o if n == 2:

%o return 0

%o p = prime(n)

%o q, r = nextprime(p), 10**len(str(p))

%o return p*q*mod_inverse(q,r) % (q*r) # _Chai Wah Wu_, Mar 31 2020

%Y Cf. A000040, A333845 (variant).

%K nonn,base

%O 1,1

%A _Bernard Schott_, Mar 27 2020

%E More terms from _Amiram Eldar_, Mar 27 2020

%E Name improved by _Rémy Sigrist_, Mar 29 2020