Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Mar 07 2022 03:49:50
%S 1,7,129,2815,65537,1579007,38862849,970522623,24494735361,
%T 623210135551,15956734640129,410649406472191,10612705274626049,
%U 275241225206890495,7159857331658817537,186731505521384226815,4880983719142471237633,127836403093194475044863
%N a(n) = Sum_{j = 0..2*n} binomial(n+j-1,j)*2^j.
%C Column 2 of the square array A333560. Compare with A119259(n) = Sum_{j = 0..n} binomial(n+j-1,j)*2^j.
%C We conjecture that this sequence satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Some examples are given below.
%F Conjectural o.g.f.: 1/(1 + x) + 8*x*f'(4*x)/(2*f(4*x) - 1), where f(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the o.g.f. of A001764.
%F exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 7*x + 89*x^2 + 1447*x^3 + ... appears to be the o.g.f. of A062747.
%F Conjectural recurrence: n*(n - 1)*(2*n - 1)*(3098*n - 6455)*a(n) = (n - 1)*(172988*n^3 - 585840*n^2 + 550321*n - 169824)*a(n-1) - 12*(11825*n^4 - 168518*n^3 + 627675*n^2 - 853766*n + 350744)*a(n-2) - 36*(n - 3)*(3*n - 7)*(3*n - 8)*(991*n - 724)*a(n-3) with a(1) = 7, a(2) = 129, a(3) = 2815.
%F From _Vaclav Kotesovec_, Mar 28 2020: (Start)
%F a(n) ~ 3^(3*n + 1/2) / (4*sqrt(Pi*n)).
%F Recurrence: n*(2*n - 1)*(7*n^2 - 20*n + 14)*a(n) = (364*n^4 - 1411*n^3 + 1818*n^2 - 868*n + 120)*a(n-1) + 6*(3*n - 5)*(3*n - 4)*(7*n^2 - 6*n + 1)*a(n-2). (End)
%F From _Peter Bala_, Mar 05 2022: (Start)
%F a(n) = Sum_{k = 0..2*n} binomial(3*n, 2*n-k)*binomial(n+k-1,k).
%F a(n) = [x^(2*n)] ( (1 + x^3)/(1 - x) )^n.
%F The o.g.f. satisfies the algebraic equation (108*x^3 + 212*x^2 + 100*x - 4)*A(x)^3 - (216*x^2 + 208*x - 8)*A(x)^2 + (48*x^2 + 155*x - 5)*A(x) + 8*x^2 - 40*x + 1 = 0. (End)
%F a(n) = binomial(3*n, 2*n)*hypergeom([-2*n, n], [n + 1], -1). - _Peter Luschny_, Mar 07 2022
%e Examples of supercongruences:
%e a(11) - a(1) = 410649406472191 - 7 = (2^3)*3*(11^3)*12855290711 == 0 ( mod 11^3 ).
%e a(3*7) - a(3) = 61103847305642669128888090623 - 2815 = (2^8)*(7^5)* 87326419*162627033103121 == 0 ( mod 7^3 ).
%e a(5^2) - a(5) = 29754989698128108780761000609579007 - 1579007 = (2^11)*(5^6)*179*751*10267*673710468794491483 == 0 ( mod 5^6 ).
%p seq(add( binomial(n+j-1,j)*2^j, j = 0..2*n), n = 0..25);
%t Table[(-1)^n - 2^(2*n+1) * Binomial[3*n, 2*n+1] * Hypergeometric2F1[1, 3*n+1, 2*n+2, 2], {n, 0, 20}] (* _Vaclav Kotesovec_, Mar 28 2020 *)
%o (PARI) a(n) = sum(j = 0, 2*n, binomial(n+j-1,j)*2^j); \\ _Michel Marcus_, Mar 28 2020
%Y Cf. A001764, A062747, A119259, A333560, A333562.
%K nonn,easy
%O 0,2
%A _Peter Bala_, Mar 27 2020