Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Apr 30 2023 02:08:53
%S 1,2,4,6,8,8,12,14,16,16,20,24,24,24,32,30,32,32,36,48,48,40,44,56,48,
%T 48,52,72,56,64,60,62,80,64,96,96,72,72,96,112,80,96,84,120,128,88,92,
%U 120,96,96,128,144,104,104,160,168,144,112,116,192,120,120,192,126,192,160,132,192,176,192
%N a(n) = Sum_{d|n, gcd(d, n/d) = 1} uphi(d) * uphi(n/d), where uphi = unitary totient function (A047994).
%H Amiram Eldar, <a href="/A333557/b333557.txt">Table of n, a(n) for n = 1..10000</a>
%F If n = Product (p_j^k_j) then a(n) = Product (2 * (p_j^k_j - 1)).
%F a(n) = 2^omega(n) * uphi(n).
%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-2)^omega(n/d) * 2^omega(d) * d.
%F a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * A145388(d).
%t uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[If[GCD[d, n/d] == 1, uphi[d] uphi[n/d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
%t Table[Sum[If[GCD[d, n/d] == 1, (-2)^PrimeNu[n/d] 2^PrimeNu[d] d, 0], {d, Divisors[n]}], {n, 1, 70}]
%t f[p_, e_] := 2*(p^e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Apr 30 2023 *)
%o (PARI) a(n) = sumdiv(n, d, if (gcd(d, n/d) == 1, (-2)^omega(n/d)*2^omega(d)*d)); \\ _Michel Marcus_, Mar 27 2020
%Y Cf. A001221, A029935, A034444, A047994, A055653, A062355, A145388.
%K nonn,mult
%O 1,2
%A _Ilya Gutkovskiy_, Mar 26 2020