Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Apr 26 2021 05:23:12
%S 0,0,1,3,9,28,88,282,921,3058,10302,35159,121406,423704,1493046,
%T 5307276,19014642,68609686,249149529,910000728,3341113126,12325295866,
%U 45664033813,169846998495,634020229888,2374550269819,8920273989351,33604033638696,126919824985533
%N Sum of the heights of all lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.
%H Alois P. Heinz, <a href="/A333504/b333504.txt">Table of n, a(n) for n = 0..400</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%p b:= proc(x, y, h) option remember; `if`(x=0, h, add((t->
%p `if`(x>t, b(x-1, t, max(h, t)), 0))(y-j), j=-1-y..min(1, y)))
%p end:
%p a:= n-> b(n, 0$2):
%p seq(a(n), n=0..33);
%t b[x_, y_, h_] := b[x, y, h] = If[x == 0, h, Sum[With[{t = y - j},
%t If[x > t, b[x - 1, t, Max[h, t]], 0]], {j, -1 - y, Min[1, y]}]];
%t a[n_] := b[n, 0, 0];
%t a /@ Range[0, 33] (* _Jean-François Alcover_, Apr 26 2021, after _Alois P. Heinz_ *)
%Y Cf. A333069, A333070, A333071, A333498, A333608.
%K nonn
%O 0,4
%A _Alois P. Heinz_, Mar 24 2020