Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 29 2020 05:19:40
%S 1,2,4,8,16,6,64,128,256,18,1024,12,4096,66,20,32768,65536,258,262144,
%T 24,68,1026,4194304,132,16777216,4098,67108864,72,268435456,22,
%U 1073741824,2147483648,1028,65538,80,264,68719476736,262146,4100,144,1099511627776,70,4398046511104
%N Position of first appearance of n in A271410 (LCM of binary indices).
%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%H Giovanni Resta, <a href="/A333492/b333492.txt">Table of n, a(n) for n = 1..1000</a>
%e The sequence together with the corresponding binary expansions and binary indices begins:
%e 1: 1 ~ {1}
%e 2: 10 ~ {2}
%e 4: 100 ~ {3}
%e 8: 1000 ~ {4}
%e 16: 10000 ~ {5}
%e 6: 110 ~ {2,3}
%e 64: 1000000 ~ {7}
%e 128: 10000000 ~ {8}
%e 256: 100000000 ~ {9}
%e 18: 10010 ~ {2,5}
%e 1024: 10000000000 ~ {11}
%e 12: 1100 ~ {3,4}
%e 4096: 1000000000000 ~ {13}
%e 66: 1000010 ~ {2,7}
%e 20: 10100 ~ {3,5}
%e 32768: 1000000000000000 ~ {16}
%e 65536: 10000000000000000 ~ {17}
%e 258: 100000010 ~ {2,9}
%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t q=Table[LCM@@bpe[n],{n,10000}];
%t Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
%Y The version for prime indices is A330225.
%Y The version for standard compositions is A333225.
%Y Let q(k) be the binary indices of k:
%Y - The sum of q(k) is A029931(k).
%Y - The elements of q(k) are row k of A048793.
%Y - The product of q(k) is A096111(k).
%Y - The LCM of q(k) is A271410(k).
%Y - The GCD of q(k) is A326674(k).
%Y GCD of prime indices is A289508.
%Y LCM of prime indices is A290103.
%Y LCM of standard compositions is A333226.
%Y Cf. A000120, A066099, A070939, A074761, A076078, A124767, A285572, A324837, A328219, A328451, A331579, A333227.
%K nonn
%O 1,2
%A _Gus Wiseman_, Mar 28 2020
%E Terms a(23) and beyond from _Giovanni Resta_, Mar 29 2020