The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333482 a(n) = [x^(2*n)] S(x)^n, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the large Schröder numbers A006318. 1
 1, 6, 304, 17718, 1093760, 69690006, 4530426640, 298634382374, 19886739416064, 1334658881073894, 90125657301992304, 6116315760393531094, 416791616968522726784, 28500344434239455360758, 1954614576511349850157392, 134392738169746273774331718, 9260873342398000417556078592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare with the sequence A103885(n) = [x^n] S(x)^n. See also A333481. The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. We conjecture that the stronger congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) hold for prime p >= 5 and positive integers n and k. More generally, we conjecture that for any positive integer a and any integer b, the sequence u(a,b;n) := [x^(a*n)] S(x)^(b*n) also satisfies the above congruences. LINKS FORMULA a(n) = (1/3) * Sum_{k = 0..2*n} C(3*n,k)*C(5*n-k-1,3*n-1) for n >= 1. P-recursive: P(n)*s(n+1) = 2*(1023893*n^8 - 1278327*n^6 + 474507*n^4 - 57533*n^2 + 1620)*s(n) + P(-n)*s(n-1), where P(n) = 3*(n + 1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(533*n^4 - 1066*n^3 + 736*n^2 - 203*n + 18). a(n) ~ (1921 + 533*sqrt(13))^n / (13^(1/4) * sqrt(Pi*n) * 2^(n+1) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 28 2020 EXAMPLE Examples of congruences: a(17) - a(1) = 639400846289617183203551941830 - 6 = (2^6)*3*(17^3)* 677836910460361523003969 == 0 ( mod 17^3 ). a(2*7) - a(2) = 1954614576511349850157392 - 304 = (2^5)*(7^4)*12408377* 2050236754217 == 0 ( mod 7^3 ). a(5^2) - a(5) = 346904370487885277935868635823142219775940006 - 69690006 = (2^4)*(5^8)*911*39097145981*1558354721574649484551883 == 0 ( mod 5^6 ) MAPLE [1, seq((1/3)*add(binomial(3*n, k)*binomial(5*n-k-1, 3*n-1), k = 0..3*n), n = 1..25)]; # alternative program S := x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x: G := (x, n) -> series(S(x)^n, x, 82): seq(coeff(G(x, n), x, 2*n), n = 0..25); MATHEMATICA Join[{1}, Table[Binomial[5*n-1, 3*n-1] * Hypergeometric2F1[-3*n, -2*n, 1 - 5*n, -1]/3, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *) CROSSREFS Cf. A006318, A103885, A333481. Sequence in context: A159494 A221850 A229148 * A104003 A280215 A015103 Adjacent sequences: A333479 A333480 A333481 * A333483 A333484 A333485 KEYWORD nonn,easy AUTHOR Peter Bala, Mar 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 10:26 EST 2022. Contains 358656 sequences. (Running on oeis4.)