OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
FORMULA
For prime p: a(p) = p, the solutions are 0^y for y = 1..p and a(p^k) = p^(2*k-1) + p^(k-1) - 1 - (p-1)*Sum_{j=0..k-2} p^j*ceiling(k/(k-j-1)).
a(n)>=n, with equality if and only if n is squarefree. - Robert Israel, Oct 08 2020
EXAMPLE
a(4) = 7, because there are 7 solutions to x^y == 0 (mod 4): 0^1 == 0, 0^2 == 0, 0^3 == 0, 0^4 == 0, 2^2 == 0, 2^3 == 0, 2^4 == 0.
MAPLE
f:= proc(n) local F, q, T, x, ymin;
F:= ifactors(n)[2];
T:= n;
q:= mul(t[1], t=F);
for x from q to n-1 by q do
ymin:= ceil(max(seq(t[2]/padic:-ordp(x, t[1]), t=F)));
T:= T + n-ymin+1;
od;
T
end proc:
map(f, [$1..100]); # Robert Israel, Oct 08 2020
MATHEMATICA
a[n_] := Sum[If[PowerMod[x, y, n] == 0, 1, 0], {x, 0, n-1}, {y, 1, n}];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 06 2023 *)
PROG
(PARI) a(n) = sum(x=0, n-1, sum (y=1, n, Mod(x, n)^y == 0)); \\ Michel Marcus, Mar 20 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Franz Vrabec, Mar 18 2020
EXTENSIONS
More terms from Jinyuan Wang, Mar 20 2020
STATUS
approved