login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A333327 Primes p such that, if p = Sum_{0<=i<=k} d_i*10^i is the decimal expansion, p mod (d_i*10^i) is prime for 0<=i<=k. 1
17, 23, 37, 47, 53, 83, 113, 317, 353, 367, 397, 443, 467, 479, 647, 653, 683, 743, 773, 953, 983, 997, 1223, 1283, 1367, 1373, 1433, 1523, 1823, 1997, 2137, 2467, 2677, 2887, 3167, 3389, 3617, 3727, 3967, 4283, 4349, 4523, 4643, 5197, 5827, 5839, 5857, 6113, 6173, 6317, 6337, 6353, 6653, 6863 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

No digits are 0.  Last digit is not 1.

LINKS

Robert Israel, Table of n, a(n) for n = 1..1000

EXAMPLE

a(7) = 113 is a term because 113, 113 mod 100 = 13, 113 mod 10 = 3, and 113 mod 3 = 2 are all prime.

MAPLE

filter:= proc(p) local L;

  if not isprime(p) then return false fi;

  L:= convert(p, base, 10);

  if has(0, L) then return false fi;

  andmap(i -> isprime(p mod (L[i]*10^(i-1))), [$1..nops(L)])

end proc:

select(filter, [seq(i, i=13..10000, 2)]);

CROSSREFS

Contained in A227916.

Sequence in context: A107644 A158710 A103805 * A241528 A156567 A231332

Adjacent sequences:  A333324 A333325 A333326 * A333328 A333329 A333330

KEYWORD

nonn,base

AUTHOR

J. M. Bergot and Robert Israel, Mar 15 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 10:54 EDT 2021. Contains 343821 sequences. (Running on oeis4.)