login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.
24

%I #35 Jul 12 2020 19:48:15

%S 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,6,1,1,2,2,

%T 2,2,1,2,2,2,1,6,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,6,1,2,2,1,2,6,1,2,

%U 2,6,1,2,1,2,2,2,2,6,1,2,1,2,1,6,2,2,2,2,1,6,2,2,2,2,2,2,1,2,2,2

%N If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.

%C Number of ordered prime factorizations of radical of n.

%C Number of permutations of the prime indices of n (counting multiplicity) avoiding the patterns (1,2,1) and (2,1,2). These are permutations with all equal parts contiguous. Depends only on sorted prime signature (A118914). - _Gus Wiseman_, Jun 27 2020

%H Robert Israel, <a href="/A333175/b333175.txt">Table of n, a(n) for n = 1..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation_pattern">Permutation pattern</a>

%H Gus Wiseman, <a href="/A102726/a102726.txt">Sequences counting and ranking compositions by the patterns they match or avoid.</a>

%F a(1) = 1; a(n) = Sum_{d|n, d < n, gcd(d, n/d) = 1} A069513(n/d) * a(d).

%F a(n) = A000142(A001221(n)).

%e From _Gus Wiseman_, Jun 27 2020 (Start)

%e The a(n) permutations of prime indices for n = 2, 12, 60:

%e (1) (112) (1123)

%e (211) (1132)

%e (2113)

%e (2311)

%e (3112)

%e (3211)

%e (End)

%p f:= n -> nops(numtheory:-factorset(n))!:

%p map(f, [$1..100]); # _Robert Israel_, Mar 12 2020

%t a[1] = 1; a[n_] := a[n] = Plus @@ (a[n/#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]

%t a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n/d, d] == 1 && d < n, Boole[PrimePowerQ[n/d]] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]

%t Table[PrimeNu[n]!, {n, 1, 100}]

%Y Cf. A000142, A000961 (positions of 1's), A001221, A050363, A066504, A069513, A064372, A093320, A292586.

%Y Dominates A335451.

%Y Permutations of prime indices are A008480.

%Y Unsorted prime signature is A124010. Sorted prime signature is A118914.

%Y (1,2,1)-avoiding permutations of prime indices are A335449.

%Y (2,1,2)-avoiding permutations of prime indices are A335450.

%Y (1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.

%Y (1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.

%Y Cf. A056239, A112798, A181796, A333221, A335452, A335463, A335521.

%K nonn

%O 1,6

%A _Ilya Gutkovskiy_, Mar 11 2020