%I #5 Mar 11 2020 18:06:52
%S 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,4,5,4,1,1,1,1,4,12,12,
%T 4,1,1,1,1,7,31,66,31,7,1,1,1,1,8,90,433,433,90,8,1,1,1,1,12,285,3442,
%U 7937,3442,285,12,1,1,1,1,14,938,30404,171984,171984,30404,938,14,1,1
%N Triangle read by rows: T(n,k) is the number of non-isomorphic n X n symmetric binary matrices with k ones in every row and column up to permutation of rows and columns.
%C Rows and columns may be permuted independently. The case that rows and columns must be permuted together is covered by A333161.
%C T(n,k) is the number of k-regular bicolored graphs on 2n unlabeled nodes which are invariant when the two color classes are exchanged.
%H Andrew Howroyd, <a href="/A333159/b333159.txt">Table of n, a(n) for n = 0..230</a>
%F T(n,k) = T(n,n-k).
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 1, 1, 1;
%e 1, 1, 2, 1, 1;
%e 1, 1, 2, 2, 1, 1;
%e 1, 1, 4, 5, 4, 1, 1;
%e 1, 1, 4, 12, 12, 4, 1, 1;
%e 1, 1, 7, 31, 66, 31, 7, 1, 1;
%e 1, 1, 8, 90, 433, 433, 90, 8, 1, 1;
%e 1, 1, 12, 285, 3442, 7937, 3442, 285, 12, 1, 1;
%e ...
%e The T(2,1) = 1 matrix is:
%e [1 0]
%e [0 1]
%e .
%e The T(4,2)= 2 matrices are:
%e [1 1 0 0] [1 1 0 0]
%e [1 1 0 0] [1 0 1 0]
%e [0 0 1 1] [0 1 0 1]
%e [0 0 1 1] [0 0 1 1]
%Y Columns k=0..4 are A000012, A000012, A002865, A000840, A000843.
%Y Row sums are A333160.
%Y Central coefficients are A333165.
%Y Cf. A008327, A122082, A333157, A133687, A333161.
%K nonn,tabl
%O 0,13
%A _Andrew Howroyd_, Mar 10 2020