OFFSET
0,5
COMMENTS
Deutsch paths (named after their inventor Emeric Deutsch by Helmut Prodinger) are like Dyck paths where down steps can get to all lower levels. Open paths can end at any level, whereas closed paths have to return to the lowest level zero at the end.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..800
Helmut Prodinger, Deutsch paths and their enumeration, arXiv:2003.01918 [math.CO], 2020
Wikipedia, Counting lattice paths
EXAMPLE
a(4) = (1/1)*(3/1) + 2/2 + 3/3 = 5.
MAPLE
b:= proc(x, y, t) option remember; `if`(x=0, 1, add(
`if`(t and j<0, x/y, 1)*b(x-1, y+j, is(j>0)), j=[
`if`(y=0, [][], -1), $1..x-1-y]))
end:
a:= n-> b(n, 0, false):
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Sum[If[t && j < 0, x/y, 1]* b[x-1, y+j, j > 0], {j, Join[If[y == 0, {}, {-1}], Range[x-1-y]]}]];
a[n_] := b[n, 0, False];
a /@ Range[0, 30] (* Jean-François Alcover, Mar 19 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 07 2020
STATUS
approved