login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total area under all nonnegative lattice paths from (0,0) to (n,0) where the allowed steps at (x,y) are (1,v) with v in {-1,0,...,max(y,1)}.
5

%I #15 Apr 05 2021 09:18:41

%S 0,0,1,4,16,56,190,637,2131,7156,24215,82758,285991,999715,3534394,

%T 12631420,45601759,166169360,610650687,2261234467,8430749631,

%U 31625520000,119281312293,452077280484,1720796968459,6575385383602,25212139233077,96970372087853

%N Total area under all nonnegative lattice paths from (0,0) to (n,0) where the allowed steps at (x,y) are (1,v) with v in {-1,0,...,max(y,1)}.

%H Alois P. Heinz, <a href="/A333107/b333107.txt">Table of n, a(n) for n = 0..1665</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Motzkin_number">Motzkin number</a>

%p b:= proc(x, y) option remember; `if`(x=0, [1, 0], add(

%p (p-> p+[0, p[1]*(y+j/2)])(b(x-1, y+j)),

%p j=-min(1, y)..min(max(1, y), x-y-1)))

%p end:

%p a:= n-> b(n, 0)[2]:

%p seq(a(n), n=0..29);

%t b[x_, y_] := b[x, y] = If[x == 0, {1, 0}, Sum[

%t Function[p, p + {0, p[[1]]*(y + j/2)}][b[x - 1, y + j]],

%t {j, -Min[1, y], Min[Max[1, y], x - y - 1]}]];

%t a[n_] := b[n, 0][[2]];

%t a /@ Range[0, 29] (* _Jean-François Alcover_, Apr 05 2021, after _Alois P. Heinz_ *)

%Y Cf. A333071, A333105, A333106, A333608.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Mar 07 2020