login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n+1) = Sum_{d|n, gcd(d, n/d) = 1} a(n/d) * a(d).
2

%I #8 Mar 09 2020 11:32:39

%S 1,1,2,4,8,16,36,72,144,288,592,1184,2384,4768,9608,19248,38496,76992,

%T 154272,308544,617152,1234448,2470080,4940160,9880608,19761216,

%U 39527200,79054400,158109088,316218176,632456976,1264913952,2529827904,5059658176,10119393344,20238787264

%N a(1) = 1; a(n+1) = Sum_{d|n, gcd(d, n/d) = 1} a(n/d) * a(d).

%H Robert Israel, <a href="/A333051/b333051.txt">Table of n, a(n) for n = 1..3320</a>

%p a[1]:= 1:

%p for n from 1 to 40 do

%p P:= ifactors(n)[2];

%p k:= nops(P);

%p t:= 0;

%p for S in combinat:-powerset(k) do

%p d:= mul(P[i][1]^P[i][2],i=S);

%p t:= t + a[d]*a[n/d]

%p od;

%p a[n+1]:= t

%p od:

%p seq(a[i],i=1..41); # _Robert Israel_, Mar 09 2020

%t a[1] = 1; a[n_] := a[n] = Sum[If[GCD[(n - 1)/d, d] == 1, a[(n - 1)/d] a[d], 0], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 36}]

%Y Cf. A038044, A122698.

%K nonn

%O 1,3

%A _Ilya Gutkovskiy_, Mar 06 2020