login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333013
Integers which can be written in exactly three ways as sum of two distinct nonzero pentagonal numbers.
4
2999, 6450, 6552, 7177, 8422, 9204, 9652, 10037, 10622, 11380, 11467, 16577, 17652, 17772, 17789, 17818, 19132, 19761, 20177, 21327, 21477, 22277, 22702, 22855, 23008, 23212, 23387, 23427, 23444, 24402, 24662, 25677, 25847, 26286, 26902, 27649, 27802, 27847, 28567, 29927
OFFSET
1,1
EXAMPLE
2999 = P(24) + P(38) = P(13) + P(43) = P(9) + P(44), where P(n) is the n-th pentagonal number A000326.
MATHEMATICA
dnpQ[n_]:=Count[IntegerPartitions[n, {2}], _?(AllTrue[(1+Sqrt[1+24#])/6, IntegerQ]&)]==3; Parallelize[Select[Range[30000], dnpQ]] (* or *) Select[Tally[Total/@Subsets[ PolygonalNumber[ 5, Range[200]], {2}]], #[[2]]==3&][[;; , 1]]//Union (* Harvey P. Dale, Jul 20 2023 *)
PROG
(PARI) is(k) = sum(i=1, sqrt(1+12*k)\6, sqrt(1+24*k+12*i-36*i*i)%6==5) == 3; \\ Jinyuan Wang, Mar 06 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Olivier Gérard, Mar 05 2020
STATUS
approved