%I #30 Jun 07 2020 10:20:00
%S 271,5746,14040,32294,50551,108737,180662,276533,259805,558256,591687,
%T 901811,1117126,1015277,1386667,1223260,1944396,3149291,3165147,
%U 4523784,4764416,4859839,6025266,7186096
%N The number of regions formed inside a triangle with leg lengths equal to the Pythagorean triples by straight line segments mutually connecting all vertices and all points that divide the sides into unit length parts.
%C The terms are from numeric computation - no formula for a(n) is currently known.
%H Scott R. Shannon, <a href="/A332978/a332978.png">Triangle regions for leg lengths (3,4,5)</a>.
%H Scott R. Shannon, <a href="/A332978/a332978_3.png">Triangle regions for leg lengths (6,8,10)</a>.
%H Scott R. Shannon, <a href="/A332978/a332978_1.png">Triangle regions for leg lengths (5,12,13)</a>.
%H Scott R. Shannon, <a href="/A332978/a332978_4.png">Triangle regions for leg lengths (9,12,15)</a>.
%H Scott R. Shannon, <a href="/A332978/a332978_2.png">Triangle regions for leg lengths (8,15,17)</a>.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean triple</a>.
%e The triples are ordered by the total sum of the leg lengths:
%e Triple | Number of regions
%e (3, 4, 5) | 271
%e (6, 8, 10) | 5746
%e (5, 12, 13) | 14040
%e (9, 12, 15) | 32294
%e (8, 15, 17) | 50551
%e (12, 16, 20) | 108737
%e (7, 24, 25) | 180662
%e (15, 20, 25) | 276533
%e (10, 24, 26) | 259805
%e (20, 21, 29) | 558256
%e (18, 24, 30) | 591687
%e (16, 30, 34) | 901811
%e (21, 28, 35) | 1117126
%e (12, 35, 37) | 1015277
%e (15, 36, 39) | 1386667
%e (9, 40, 41) | 1223260
%e (24, 32, 40) | 1944396
%e (27, 36, 45) | 3149291
%e (14, 48, 50) | 3165147
%e (20, 48, 52) | 4523784
%e (24, 45, 51) | 4764416
%e (30, 40, 50) | 4859839
%e (28, 45, 53) | 6025266
%e (33, 44, 55) | 7186096
%Y Cf. A333135 (n-gons), A333136 (vertices), A333137 (edges), A103605 (Pythagorean triple ordering), A007678, A092867, A331452.
%K nonn,more
%O 1,1
%A _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 04 2020
%E a(8)-a(24) from _Lars Blomberg_, Jun 07 2020