|
|
A332960
|
|
Number of labeled forests with n trees and 2n nodes and with the largest tree having exactly 3 nodes.
|
|
2
|
|
|
0, 12, 180, 5040, 151200, 6029100, 276215940, 14983768800, 919653134400, 63694663332300, 4888759865289300, 412920835111184400, 38015644799992860000, 3791220682538296507500, 407033985027273005902500, 46814497435454120812440000, 5742194963898519585098640000, 748255970051952172869045487500
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Given a forest of 2n nodes and n trees, suppose that it has c_1 trees of 1 node, c_2 trees of 2 nodes, and c_3 trees of 3 nodes. We have c_1 + c_2 + c_3 = n, and c_1 + 2c_2 + 3c_3 = 2n, so c_1 = c_3, and c_2 = n - 2c_1. Because c_2 >= 0, c_1 <= floor(n/2). In this case the first formula in A332959 (with k = 3) reduces to the first formula below.
|
|
REFERENCES
|
D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley, 2005, pp. 39.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (2*n)! * Sum_{c=1..floor(n/2)} 1/(c!^2 * (n-2*c)! * 2^(n-c)).
a(n) ~ (2 + 4*sqrt(2))^(n + 1/2) * n^(n - 1/2) / (2^(5/4) * sqrt(Pi) * exp(n)).
a(n) ~ n! * (2 + 4*sqrt(2))^(n + 1/2) / (2^(7/4)*Pi*n). (End)
|
|
EXAMPLE
|
a(6) = 12! * ( 1 / (1!^2 * (6-2*1)! * 2^(6-1)) + 1 / (2!^2 * (6-2*2)! * 2^(6-2)) + 1 / (3!^2 * (6-2*3)! * 2^(6-3)) ) = 6029100.
|
|
MATHEMATICA
|
Table[(2*n)! * (Hypergeometric2F1[1/2 - n/2, -n/2, 1, 8] - 1) / (2^n * n!), {n, 2, 20}] (* Vaclav Kotesovec, Apr 17 2020 *)
|
|
PROG
|
(PARI) a(n)= {(2*n)! * sum(c=1, n\2, 1/(c!^2 * (n-2*c)! * 2^(n-c)))};
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|