The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332942 Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by increasing lengths. 2
 1, 7, 25, 101, 366, 1555, 7099, 34627, 184033, 1059972, 6425992, 41266681, 280938451, 2009636335, 15025372685, 117386912433, 956458929950, 8104399834719, 71244441818927, 648761935841876, 6110827367541999, 59454153443971106, 596654820386392152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 2..576 Wikipedia, Partition of a set MAPLE b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0, add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial](n, i\$j, n-i*j)), j=0..n/i))) end: a:= n-> b(n, 1, 2)[2]: seq(a(n), n=2..24); MATHEMATICA multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0 {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]]; a[n_] := b[n, 1, 2][[2]]; a /@ Range[2, 24] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *) CROSSREFS Column k=2 of A319298. Sequence in context: A304421 A138729 A035509 * A247173 A141627 A289606 Adjacent sequences: A332939 A332940 A332941 * A332943 A332944 A332945 KEYWORD nonn AUTHOR Alois P. Heinz, Mar 03 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 17:08 EDT 2024. Contains 371749 sequences. (Running on oeis4.)