login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of ceiling(n^(3/2)) where d runs through the divisors of n.
6

%I #17 Oct 08 2022 09:45:43

%S 1,4,7,12,13,25,20,35,34,48,38,75,48,76,78,99,72,129,84,146,123,145,

%T 112,216,138,184,175,233,158,293,174,281,234,274,240,395,227,322,298,

%U 422,264,467,283,445,407,427,324,613,363,527,443,567,387,667,458,676

%N Sum of ceiling(n^(3/2)) where d runs through the divisors of n.

%H Amiram Eldar, <a href="/A332935/b332935.txt">Table of n, a(n) for n = 1..10000</a>

%p a:= n-> add(ceil(d^(3/2)), d=numtheory[divisors](n)):

%p seq(a(n), n=1..60); # _Alois P. Heinz_, Mar 02 2020

%t Table[DivisorSum[n,Ceiling[Sqrt[#^3]]&],{n,80}]

%o (PARI) a(n)={sumdiv(n, d, 1 + sqrtint(d^3 - 1))} \\ _Andrew Howroyd_, Mar 02 2020

%o (Python)

%o from math import isqrt

%o from sympy import divisors

%o def A332935(n): return sum(1+isqrt(d**3-1) for d in divisors(n,generator=True)) # _Chai Wah Wu_, Aug 03 2022

%Y Cf. A058271, A086671, A332931, A332932, A332933, A332934.

%K nonn

%O 1,2

%A _Harvey P. Dale_, Mar 02 2020