login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of entries in the sixth cycles of all permutations of [n] when cycles are ordered by increasing lengths.
2

%I #5 Mar 02 2020 11:38:47

%S 1,43,785,14065,234646,3890624,65790726,1149152226,20755593249,

%T 389723127653,7616467493381,155034653456005,3285524611730078,

%U 72467273447829602,1661985062849397148,39610017536621076924,979981089604037392299,25145506663601266049403

%N Number of entries in the sixth cycles of all permutations of [n] when cycles are ordered by increasing lengths.

%H Alois P. Heinz, <a href="/A332910/b332910.txt">Table of n, a(n) for n = 6..450</a>

%H Andrew V. Sills, <a href="https://arxiv.org/abs/1912.05306">Integer Partitions Probability Distributions</a>, arXiv:1912.05306 [math.CO], 2019.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%p b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,

%p add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*

%p b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]

%p (n, i$j, n-i*j)), j=0..n/i)))

%p end:

%p a:= n-> b(n, 1, 6)[2]:

%p seq(a(n), n=6..23);

%Y Column k=6 of A322383.

%K nonn

%O 6,2

%A _Alois P. Heinz_, Mar 02 2020