Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 15 2021 13:01:56
%S 1,2,3,2,5,1,7,2,3,5,11,1,13,7,5,2,17,1,19,5,21,11,23,1,5,13,3,7,29,5,
%T 31,2,11,17,35,1,37,19,39,5,41,7,43,11,5,23,47,1,7,5,17,13,53,1,55,7,
%U 57,29,59,5,61,31,21,2,65,11,67,17,23,35
%N If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j).
%C Denominator of sum of reciprocals of squarefree divisors of n.
%H Antti Karttunen, <a href="/A332881/b332881.txt">Table of n, a(n) for n = 1..20000</a>
%F Denominators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
%F a(n) = denominator of Sum_{d|n} mu(d)^2/d.
%F a(n) = denominator of psi(n)/n.
%F a(p) = p, where p is prime.
%F a(n) = n / A306695(n) = n / gcd(n, A001615(n)). - _Antti Karttunen_, Nov 15 2021
%e 1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
%p a:= n-> denom(mul(1+1/i[1], i=ifactors(n)[2])):
%p seq(a(n), n=1..80); # _Alois P. Heinz_, Feb 28 2020
%t Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
%t Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Denominator
%o (PARI)
%o A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
%o A332881(n) = denominator(A001615(n)/n);
%Y Cf. A001615, A008683, A017666, A048250, A007947, A109395, A187778 (positions of 1's), A306695, A308443, A308462, A332880 (numerators), A332883.
%K nonn,frac
%O 1,2
%A _Ilya Gutkovskiy_, Feb 28 2020