Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Apr 25 2021 13:11:43
%S 1,4,20,1834,14995,6986,2888370,795412,37366487,8803255100
%N a(n) = minimal positive k such that the concatenation of decimal digits 1,2,...,n is a divisor of the concatenation of n+1,n+2,...,n+k.
%C As with A332580 a heuristic argument, based on the divergent sum of reciprocals which approximates the probability that the concatenation of 1,2,...,n will divide the concatenation of n+1,n+2,...,n+k suggests that k should always exist. However an examination of the prime factors of the concatenation of 1,2,...,n shows that most of these numbers contain one or more very large primes, suggesting the values of k will likely become extremely large as n increases.
%C The author thanks _Joseph Myers_ for suggestions for finding the larger terms of this sequence.
%H J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020.
%e a(2) = 4 as '1'||'2' = 12 and '3'||'4'||'5'||'6' = 3456, which is divisible by 12 (where '||' denotes decimal concatenation).
%e a(3) = 20 as '1'||'2'||'3' = 123 and '4'||'5'||...||'22'||'23' = 4567891011121314151617181920212223, which is divisible by 123.
%p a:= proc(n) local i, t, m; t, m:= parse(cat($1..n)), 0;
%p for i from n+1 do m:= parse(cat(m,i)) mod t;
%p if m=0 then break fi od; i-n
%p end:
%p seq(a(n), n=1..6); # _Alois P. Heinz_, Feb 29 2020
%o (PARI) a(n) = {my(k=1, small="", big = n+1); for (j=1, n, small=concat(small, Str(j))); small = eval(small); while (big % small, k++; big = eval(concat(Str(big), Str(n+k)))); k;} \\ _Michel Marcus_, Feb 29 2020
%o (Python)
%o def A332867(n):
%o m, k = int(''.join(str(d) for d in range(1,n+1))), 1
%o i = n+k
%o i2, l = i % m, len(str(i))
%o t = 10**l
%o t2, r = t % m, i % m
%o while r != 0:
%o k += 1
%o i += 1
%o i2 = (i2+1) % m
%o if i >= t:
%o l += 1
%o t *= 10
%o t2 = (10*t2) % m
%o r = (r*t2 + i2) % m
%o return k # _Chai Wah Wu_, May 20 2020
%Y Cf. A332580, A332830, A007908.
%K nonn,base,more,hard
%O 1,2
%A _Scott R. Shannon_, Feb 27 2020