login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of entries in the fifth cycles of all permutations of [n] when cycles are ordered by decreasing lengths.
2

%I #8 Mar 13 2021 10:04:34

%S 1,16,197,2311,27568,343909,4541329,63719723,949770615,15010838233,

%T 250997692441,4430433962701,82376202579421,1610014961936672,

%U 33010385435710028,708642421376230354,15899009565671538930,372166745683645768206,9074749796104015627262

%N Number of entries in the fifth cycles of all permutations of [n] when cycles are ordered by decreasing lengths.

%H Alois P. Heinz, <a href="/A332854/b332854.txt">Table of n, a(n) for n = 5..450</a>

%H Andrew V. Sills, <a href="https://arxiv.org/abs/1912.05306">Integer Partitions Probability Distributions</a>, arXiv:1912.05306 [math.CO], 2019.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%p b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,

%p add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*

%p b(n-i*j, min(n-i*j, i-1), max(0, t-j))/j!*

%p combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))

%p end:

%p a:= n-> b(n$2, 5)[2]:

%p seq(a(n), n=5..23);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i<1, {0, 0},

%t Sum[Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i},

%t {0, 0}]][(i-1)!^j*b[n - i*j, Min[n - i*j, i-1], Max[0, t-j]]/j!*

%t multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];

%t a[n_] := b[n, n, 5][[2]];

%t Table[a[n], {n, 5, 23}] (* _Jean-François Alcover_, Mar 13 2021, after _Alois P. Heinz_ *)

%Y Column k=5 of A322384.

%K nonn

%O 5,2

%A _Alois P. Heinz_, Feb 26 2020