%I #104 Dec 21 2020 07:23:47
%S 6,10,15,22,35,55,77,91,143,187,221,253,323,391,493,551,667,713,899,
%T 1073,1189,1271,1517,1591,1763,1961,2183,2419,2537,2773,3127,3233,
%U 3599,3953,4189,4331,4757,4897,5293,5723,5963,6499,6887,7171,7663,8051,8633,8989,9797,9991,10403,10807
%N Consider all permutations p_i of the first n primes; a(n) is the minimum over p_i of the maximal product of two adjacent primes in the permutation.
%C The optimal permutation of n primes is {p_n, p_1, p_n-1, p_2, …, p_ceiling(n/2)}. - _Ivan N. Ianakiev_, Apr 28 2020
%C Also the greatest squarefree semiprime whose prime indices sum to n + 1. A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. - _Gus Wiseman_, Dec 06 2020
%F It appears that a(n) = A332877(n - 1) for n > 5.
%e Here are the ways (up to reversal) to order the first four primes:
%e 2, 3, 5, 7: Products: 6, 15, 35; Largest product: 35
%e 2, 3, 7, 5: Products: 6, 21, 35; Largest product: 35
%e 2, 5, 3, 7: Products: 10, 15, 21; Largest product: 21
%e 2, 5, 7, 3: Products: 10, 35, 21; Largest product: 35
%e 2, 7, 3, 5: Products: 14, 21, 15; Largest product: 21
%e 2, 7, 5, 3: Products: 14, 35, 15; Largest product: 35
%e 3, 2, 5, 7: Products: 6, 10, 35; Largest product: 35
%e 3, 2, 7, 5: Products: 6, 14, 35; Largest product: 35
%e 3, 5, 2, 7: Products: 15, 10, 14; Largest product: 15
%e 3, 7, 2, 5: Products: 21, 14, 10; Largest product: 21
%e 5, 2, 3, 7: Products: 10, 6, 21; Largest product: 21
%e 5, 3, 2, 7: Products: 15, 6, 14; Largest product: 15
%e The minimum largest product is 15, so a(4) = 15.
%e From _Gus Wiseman_, Dec 06 2020: (Start)
%e The sequence of terms together with their prime indices begins:
%e 6: {1,2} 551: {8,10} 3127: {16,17}
%e 10: {1,3} 667: {9,10} 3233: {16,18}
%e 15: {2,3} 713: {9,11} 3599: {17,18}
%e 22: {1,5} 899: {10,11} 3953: {17,19}
%e 35: {3,4} 1073: {10,12} 4189: {17,20}
%e 55: {3,5} 1189: {10,13} 4331: {18,20}
%e 77: {4,5} 1271: {11,13} 4757: {19,20}
%e 91: {4,6} 1517: {12,13} 4897: {17,23}
%e 143: {5,6} 1591: {12,14} 5293: {19,22}
%e 187: {5,7} 1763: {13,14} 5723: {17,25}
%e 221: {6,7} 1961: {12,16} 5963: {19,24}
%e 253: {5,9} 2183: {12,17} 6499: {19,25}
%e 323: {7,8} 2419: {13,17} 6887: {20,25}
%e 391: {7,9} 2537: {14,17} 7171: {20,26}
%e 493: {7,10} 2773: {15,17} 7663: {22,25}
%e (End)
%t primes[n_]:=Reverse[Prime/@Range[n]]; partition[n_]:=Partition[primes[n],UpTo[Ceiling[n/2]]];
%t riffle[n_]:=Riffle[partition[n][[1]],Reverse[partition[n][[2]]]];
%t a[n_]:=Max[Table[riffle[n][[i]]*riffle[n][[i+1]],{i,1,n-1}]];a/@Range[2,53]
%t (* _Ivan N. Ianakiev_, Apr 28 2020 *)
%Y Cf. A332877, A333747.
%Y A338904 and A338905 have this sequence as row maxima.
%Y A339115 is the not necessarily squarefree version.
%Y A001358 lists semiprimes.
%Y A005117 lists squarefree numbers.
%Y A006881 lists squarefree semiprimes.
%Y A025129 gives the sum of squarefree semiprimes of weight n.
%Y A056239 (weight) gives the sum of prime indices of n.
%Y A320656 counts factorizations into squarefree semiprimes.
%Y A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
%Y A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
%Y A338907/A338908 list squarefree semiprimes of odd/even weight.
%Y A339114 is the least (squarefree) semiprime of weight n.
%Y A339116 groups squarefree semiprimes by greater prime factor.
%Y Cf. A001221, A014342, A024697, A046388, A062198, A098350, A112798, A168472, A320655, A338901.
%K nonn
%O 2,1
%A _Bobby Jacobs_, Apr 23 2020
%E a(12)-a(13) from _Jinyuan Wang_, Apr 24 2020
%E More terms from _Ivan N. Ianakiev_, Apr 28 2020