Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 30 2020 03:57:57
%S 1,0,0,2,0,0,0,1,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,2,0,0,
%T 0,4,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,
%U 0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4
%N a(n) = Sum_{d|n} mu(d/gcd(d, n/d)).
%H Amiram Eldar, <a href="/A332712/b332712.txt">Table of n, a(n) for n = 1..10000</a>
%F Dirichlet g.f.: zeta(2*s)^2 * zeta(3*s) / zeta(6*s).
%F a(n) = Sum_{d|n} mu(lcm(d, n/d)/d).
%F a(n) = Sum_{d|n} (-1)^bigomega(n/d) * A005361(d).
%F a(n) = Sum_{d|n} A010052(n/d) * A112526(d).
%F Sum_{k=1..n} a(k) ~ zeta(3/2)*sqrt(n)*log(n)/(2*zeta(3)) + ((2*gamma - 1)*zeta(3/2) + 3*zeta'(3/2)/2 - 3*zeta(3/2)*zeta'(3)/zeta(3)) * sqrt(n)/zeta(3) + 6*zeta(2/3)^2 * n^(1/3)/Pi^2, where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Feb 21 2020
%F Multiplicative with a(p^e) = A028242(e). - _Amiram Eldar_, Nov 30 2020
%t Table[Sum[MoebiusMu[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 100}]
%t A005361[n_] := Times @@ (#[[2]] & /@ FactorInteger[n]); a[n_] := Sum[(-1)^PrimeOmega[n/d] A005361[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
%t f[p_, e_] := 3*Floor[e/2] - e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Nov 30 2020 *)
%o (PARI) a(n) = sumdiv(n, d, moebius(d/gcd(d, n/d))); \\ _Michel Marcus_, Feb 20 2020
%Y Cf. A001222, A001694 (positions of nonzero terms), A005361, A007427, A008683, A008836, A028242, A052485 (positions of 0's), A062838 (positions of 1's), A112526, A252505, A322483, A332685, A332713.
%K nonn,mult
%O 1,4
%A _Ilya Gutkovskiy_, Feb 20 2020