|
|
A332676
|
|
Prime numbers p_k such that p_k == 3 (mod 10) and p_(k+1) == 3 (mod 10).
|
|
3
|
|
|
283, 1153, 1723, 2053, 2143, 3413, 3583, 3823, 3853, 4243, 4273, 4363, 4483, 4663, 5323, 5903, 6133, 6163, 6343, 6553, 6793, 6803, 7253, 7963, 8243, 8353, 8543, 8563, 8783, 8893, 9283, 9403, 10223, 10303, 10433, 10993, 11093, 11383, 12253, 12703, 13063, 13513, 13933, 14293, 14983
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, arXiv:1603.03720 [math.NT], 2016.
R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes, Proceedings of the National Academy of Sciences of the United States of America, Vol. 113, No. 31 (2016), E4446-E4454.
|
|
MAPLE
|
filter:= t -> isprime(t) and nextprime(t) mod 10 = 3:
select(filter, [seq(i, i=3..20000, 10)]); # Robert Israel, May 08 2020
|
|
MATHEMATICA
|
First @ Transpose @ Select[Partition[Select[Range[20000], PrimeQ], 2, 1], Mod[First[#], 10] == 3 && Mod[Last[#], 10] == 3 &] (* Amiram Eldar, Feb 19 2020 *)
|
|
CROSSREFS
|
Cf. A030430 (1, any), A330366 (1, 1), A331555 (1, 3), A331324 (1, 7), A332674 (1, 9), A030431 (3, any), A332675 (3, 1), this sequence (3, 3), A030432 (7, any), A030433 (9, any) [where (a, b) means p_k == a (mod 10) and p_(k+1) == b (mod 10)].
Sequence in context: A142446 A345905 A059257 * A142837 A064964 A263670
Adjacent sequences: A332673 A332674 A332675 * A332677 A332678 A332679
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
A.H.M. Smeets, Feb 19 2020
|
|
STATUS
|
approved
|
|
|
|