login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{n>=1} 1/z(n)^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
11

%I #63 Aug 06 2024 06:36:29

%S 0,2,3,1,0,4,9,9,3,1,1,5,4,1,8,9,7,0,7,8,8,9,3,3,8,1,0,4,3,0,3,3,9,0,

%T 1,4,0,0,3,3,8,1,7,6,0,3,9,7,4,2,2,0,9,0,1,2,3,1,8,2,5,0,0,5,6,0,7,6,

%U 3,7,4,7,9,5,4,0,0,6,1,6,3,1,3,9,8,4,4,4,8,6,7,8,3,1,5,8,9,8,0,0,6,9,7,6,7,7

%N Decimal expansion of Sum_{n>=1} 1/z(n)^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

%D J. P. Gram, "Note sur le calcul de la fonction zeta(s) de Riemann", Det Kgl. Danske Vid. Selsk. Overs., 1895, pp. 303-308. p.307 (16 decimal digits).

%D Charles Jean De La Vallée Poussin, Sur La Fonction de Riemann Et Le Nombre Des Nombres Premiers Inférieurs à Une Limite Donnee, 1899.

%H Jesús Guillera, <a href="https://arxiv.org/abs/1307.5723">Some sums over the non-trivial zeros of the Riemann zeta function</a>, arXiv:1307.5723v7 [math.NT], 2013-2014; see p.9 eq.(21).

%H Kano Kono, <a href="http://fractional-calculus.com/vieta%27s_formulas_completed_riemann_zeta.pdf">Vieta's Formulas on Completed Riemann Zeta</a>, Alien's Mathematics p. 13 eq. 2.3(2).

%H E. Landau, <a href="https://archive.org/details/handbuchderlehre01landuoft/page/314/mode/2up"> Handbuch der Lehre von der Verteilung der Primzahlen I</a>, 1909, pp. 310-342.

%H J. J. Y. Liang and John Todd, <a href="https://archive.org/details/jresv76Bn3-4p161/page/n15/mode/2up">The Stieltjes Constants</a>, Journal of Research of the National Bureau of Standards, 1972, pp. 175-176.

%H André Voros, <a href="https://arxiv.org/abs/math/0104051">Zeta functions for the Riemann zeros</a>, arXiv:math/0104051 [math.CV], 2002-2003, p.25 Table 2.

%H André Voros, <a href="https://citeseerx.ist.psu.edu/pdf/937e9d9c737304007c6af6a58901a8c1e530df31">Zeta functions for the Riemann zeros</a>, 2001(2008) p.20 Table 1.

%H André Voros, <a href="https://doi.org/10.5802/aif.1955">Zeta functions for the Riemann zeros</a>, Annales de l'Institut Fourier, Tome 53 (2003) no. 3, p. 665-699.

%H André Voros, <a href="https://www.springer.com/gp/book/9783642052026">Zeta functions over Zeros of the Zeta functions</a>, 2010, p. 153.

%F Equals -4 + G + Pi^2/8 + (1/2)(zeta''(1/2)/zeta(1/2) - (zeta'(1/2)/zeta(1/2))^2) where G is the Catalan constant A006752.

%F Equals G - 4 + (Pi^2 - (gamma + Pi/2 + log(8*Pi))^2) / 8 + zeta''(1/2) / (2*zeta(1/2)), where gamma is the Euler-Mascheroni constant A001620 and G is the Catalan constant A006752. - _Vaclav Kotesovec_, Feb 19 2020

%F Also equals (-32 - log(Pi)^2 + psi(0, 1/4)^2 + psi(1, 1/4) + 4*(psi(0, 1/4) * zeta'(1/2) + zeta''(1/2)) / zeta(1/2)) / 8, where psi(0, 1/4) = -A020777 and psi(1, 1/4) = A282823. - _Vaclav Kotesovec_, Feb 19 2020

%e 0.0231049931154189707889338104303390140033817603974220901231825...

%p evalf((-32 - log(Pi)^2 + Psi(0, 1/4)^2 + Psi(1, 1/4) + 4*(Psi(0, 1/4) * Zeta(1, 1/2) + Zeta(2, 1/2)) / Zeta(1/2)) / 8, 120); # _Vaclav Kotesovec_, Feb 19 2020

%t Join[{0}, RealDigits[N[-4 + Catalan + Pi^2/8 + (Zeta''[1/2]/Zeta[1/2] - (Zeta'[1/2] / Zeta[1/2])^2)/2, 105]][[1]]]

%t N[SeriesCoefficient[Log[s*(s-1)*Pi^(-s/2)*Gamma[s/2]*Zeta[s]/2], {s, 1/2, 2}], 105] (* _Vaclav Kotesovec_, Feb 19 2020 *)

%Y Cf. A006752, A074760, A332614.

%K nonn,cons

%O 0,2

%A _Artur Jasinski_, Feb 18 2020