login
A332635
a(n) = n!! mod prime(n).
2
1, 2, 3, 1, 4, 9, 3, 4, 2, 12, 10, 15, 40, 34, 9, 11, 3, 28, 50, 55, 15, 24, 31, 80, 8, 16, 86, 65, 54, 40, 71, 54, 62, 85, 122, 114, 1, 40, 4, 87, 45, 126, 172, 53, 93, 109, 139, 28, 167, 78, 19, 222, 182, 136, 230, 231, 110, 163, 264, 45, 92, 134, 177, 241
OFFSET
1,2
COMMENTS
a(n) > 0, as n!! cannot be divisible by prime(n): n < prime(n) for all n, so the prime factorization of n!! never includes prime(n).
a(n) = 1 for n = 1, 4, 37, 2721, ... .
a(n) = n for n = 1, 2, 3, 86, 122, ... .
LINKS
FORMULA
a(n) = n!! mod prime(n), where n!! denotes the double factorial of n.
EXAMPLE
For n = 4, a(4) = 4!! mod prime(4) = 8 mod 7 = 1.
MATHEMATICA
Table[Mod[n!!, Prime[n]], {n, 100}]
PROG
(PARI) a(n) = my(p=prime(n)); lift(prod(i=0, (n-1)\2, Mod(n-2*i, p))); \\ Michel Marcus, Feb 25 2020
CROSSREFS
Cf. A000040 (primes), A006882 (double factorials), A091858 (n! mod prime(n)).
Sequence in context: A057597 A226392 A121340 * A358664 A231206 A165241
KEYWORD
nonn,easy
AUTHOR
Andrew Nelson, Feb 17 2020
STATUS
approved