Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 16 2021 14:03:57
%S 5,27,152,364,776,1340,2272,3532,5336,7516,10592,14316,19328,25100,
%T 32176,40428,50848,62476,76824,93020,111880,132492,157056,184140,
%U 215552,249452,287928,329900,378216,429852,488768,552572,623104,697884,780464,868588,967056
%N Number of vertices in a "frame" of size n X n (see Comments in A331776 for definition).
%C See A331776 for many other illustrations.
%C Theorem. Let z(n) = Sum_{i, j = 1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) (this is A115004) and z_2(n) = Sum_{i, j = 1..n, gcd(i,j)=2} (n+1-i)*(n+1-j) (this is A331761). Then, for n >= 3, a(n) = 4*z(n) - 4*z_2(n) + 12*n^2 - 24*n + 8. (This does not hold for n<3, because it uses Euler's formula, and the graph for n<3 has no hole, so has genus 0, whereas for n>=3 there is a hole and the graph has genus 1.) - _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 04 2020
%H Jinyuan Wang, <a href="/A332598/b332598.txt">Table of n, a(n) for n = 1..1000</a>
%H Scott R. Shannon, <a href="/A331776/a331776.png">Colored illustration for a(3) = 152</a> (there are 152 vertices in this picture).
%F For n > 2, a(n) = 4*(n-1)*(3n-1)+12*Sum_{i=2..floor(n/2)} (n+1-i)*i*phi(i) + 4*Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i). - _Chai Wah Wu_, Aug 16 2021
%p V := proc(m, n, q) local a, i, j; a:=0;
%p for i from 1 to m do for j from 1 to n do
%p if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
%p f := n -> if n=1 then 5 elif n=2 then 27 else 12*n^2 - 24*n + 8 + 4*V(n,n,1) - 4*V(n, n, 2); fi;
%p [seq(f(n), n=1..50)]; # _N. J. A. Sloane_, Mar 10 2020
%o (PARI) a(n) = if(n<3, 22*n - 17, 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) - 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + 12*n^2 - 24*n + 8); \\ _Jinyuan Wang_, Aug 07 2021
%o (Python)
%o from sympy import totient
%o def A332598(n): return 22*n-17 if n <= 2 else 4*(n-1)*(3*n-1) + 12*sum(totient(i)*(n+1-i)*i for i in range(2,n//2+1)) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)) # _Chai Wah Wu_, Aug 16 2021
%Y Cf. A331776 (regions), A332597 (edges).
%K nonn
%O 1,1
%A _Scott R. Shannon_ and _N. J. A. Sloane_, Mar 02 2020
%E More terms from _N. J. A. Sloane_, Mar 10 2020