The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A332592 Let t_k denote the triangular number k*(k+1)/2. Suppose 0 < x < y < z are integers satisfying t_x + t_y = t_p, t_y + t_z = t_q, t_x + t_z = t_r, for integers p,q,r. Sort the triples [x,y,z] first by x, then by y. Sequence gives the values of q. 3
 46, 116, 215, 95, 397, 108, 641, 309, 1019, 125, 283, 1504, 337, 249, 2186, 414, 1031, 170, 182, 242, 3032, 570, 4150, 1283, 5501, 401, 533, 1076, 779, 7211, 7902, 735, 755, 553, 9235, 1421, 11717, 960, 6779, 1421, 1230, 889, 14606, 1821, 508, 2861, 18064, 22034 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Ulas gives a table assuming 0 < x < y < z < 1000. Because of the assumption z < 1000, only the entries with x < 46 can be relied upon (above this it is possible that there are gaps in the table). LINKS Giovanni Resta, Table of n, a(n) for n = 1..162 Ulas Maciej, A note on Sierpinski's problem related to triangular numbers, arXiv:0810.0222 [math.NT], 2008. See Table 1. Ulas Maciej, A note on Sierpinski's problem related to triangular numbers, Colloq. Math. 117 (2009), no. 2, 165-173. See MR2550124. See Table 1. EXAMPLE The initial values of x, y, z, p, q, r are:    x    y    z    p    q    r   --  ---  ---  --- ----  ---    9   13   44   16   46   45   14   51  104   53  116  105   20   50  209   54  215  210   23   30   90   38   95   93   27  124  377  127  397  378   35   65   86   74  108   93   35  123  629  128  641  630   41  119  285  126  309  288   44  245  989  249 1019  990   ... MATHEMATICA L = {}; t[n_] := n (n + 1)/2; Do[ syp = Solve[t[x] + t[y] == t[p] && p > 0 && y > x , {p, y}, Integers]; If[syp =!= {}, Do[{y1, p1} = {y, p} /. e; s = Solve[ t[y1] + t[z] == t[q] && t[x] + t[z] == t[r]  && q > 0 && z > y1 && r > 0, {z, q, r}, Integers]; If[s =!= {}, L = Join[L, {x, y1, z, p1, q, r} /. s]], {e, syp}]], {x, 54}]; Sort[L][[All, 5]] (* Giovanni Resta, Mar 02 2020 *) CROSSREFS Cf. A000217, A332588-A332593. Sequence in context: A118620 A044233 A044614 * A217083 A039529 A044297 Adjacent sequences:  A332589 A332590 A332591 * A332593 A332594 A332595 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 29 2020 EXTENSIONS Terms a(10) and beyond from Giovanni Resta, Mar 02 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 13:25 EDT 2021. Contains 345048 sequences. (Running on oeis4.)