login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let t_k denote the triangular number k*(k+1)/2. Suppose 0 < x < y < z are integers satisfying t_x + t_y = t_p, t_y + t_z = t_q, t_x + t_z = t_r, for integers p,q,r. Sort the triples [x,y,z] first by x, then by y. Sequence gives the values of p.
2

%I #17 Mar 02 2020 20:09:23

%S 16,53,54,38,127,74,128,126,249,86,153,250,117,150,431,206,465,118,

%T 147,147,432,296,685,686,686,200,378,561,444,1023,1552,218,278,205,

%U 1024,621,1457,306,1866,431,603,499,1458,1022,359,1289,1999,2000,1065,1589,446,486

%N Let t_k denote the triangular number k*(k+1)/2. Suppose 0 < x < y < z are integers satisfying t_x + t_y = t_p, t_y + t_z = t_q, t_x + t_z = t_r, for integers p,q,r. Sort the triples [x,y,z] first by x, then by y. Sequence gives the values of p.

%C Ulas gives a table assuming 0 < x < y < z < 1000. Because of the assumption z < 1000, only the entries with x < 46 can be relied upon (above this it is possible that there are gaps in the table).

%H Giovanni Resta, <a href="/A332591/b332591.txt">Table of n, a(n) for n = 1..162</a>

%H Ulas Maciej, <a href="https://arxiv.org/abs/0810.0222">A note on Sierpinski's problem related to triangular numbers</a>, arXiv:0810.0222 [math.NT], 2008. See Table 1.

%H Ulas Maciej, <a href="http://dx.doi.org/10.4064/cm117-2-2">A note on Sierpinski's problem related to triangular numbers</a>, Colloq. Math. 117 (2009), no. 2, 165-173. See MR2550124. See Table 1.

%e The initial values of x, y, z, p, q, r are:

%e x y z p q r

%e -- --- --- --- ---- ---

%e 9 13 44 16 46 45

%e 14 51 104 53 116 105

%e 20 50 209 54 215 210

%e 23 30 90 38 95 93

%e 27 124 377 127 397 378

%e 35 65 86 74 108 93

%e 35 123 629 128 641 630

%e 41 119 285 126 309 288

%e 44 245 989 249 1019 990

%e ...

%t L = {}; t[n_] := n (n + 1)/2; Do[ syp = Solve[t[x] + t[y] == t[p] && p > 0 && y > x , {p, y}, Integers]; If[syp =!= {}, Do[{y1, p1} = {y, p} /. e; s = Solve[ t[y1] + t[z] == t[q] && t[x] + t[z] == t[r] && q > 0 && z > y1 && r > 0, {z, q, r}, Integers]; If[s =!= {}, L = Join[L, {x, y1, z, p1, q, r} /. s]], {e, syp}]], {x, 54}]; Sort[L][[All, 4]] (* _Giovanni Resta_, Mar 02 2020 *)

%Y Cf. A000217, A332588-A332593.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Feb 29 2020

%E Terms a(10) and beyond from _Giovanni Resta_, Mar 02 2020